Severe accident neutronics and thermal hydraulics can be simulated beautifully for simple geometries and well studied materials. (below, INL BISON work.)
                                        
                                                \[\sigma(E,\vec{r},\hat{\Omega},T,x,i)\]
\[k=1\]
                                        
                                          \[\beta_i, \lambda_{d,i}\]
                                                
                                        
# External Reactivity
from reactivity_insertion import RampReactivityInsertion
rho_ext = RampReactivityInsertion(timer=ti,
                                  t_start=t_feedback + 10.0*units.seconds,
                                  t_end=t_feedback + 20.0*units.seconds,
                                  rho_init=0.0*units.delta_k,
                                  rho_rise=600.0*units.pcm,
                                  rho_final=600.0*units.pcm)
                                                
                                                
                                        
fuel = th.THComponent(name="fuel",
                      mat=TRISO(),
                      vol=vol_fuel,
                      T0=t_fuel,
                      alpha_temp=alpha_fuel,
                      timer=ti,
                      heatgen=True,
                      power_tot=power_tot/n_pebbles,
                      sph=True,
                      ri=r_mod,
                      ro=r_fuel
                      )
mod = th.THComponent(name="mod",
                     mat=Graphite(),
                     vol=vol_mod,
                     T0=t_mod,
                     alpha_temp=alpha_mod,
                     timer=ti,
                     sph=True,
                     ri=0.0,
                     ro=r_mod)
cool = th.THComponent(name="cool",
                      mat=Flibe(),
                      vol=vol_cool,
                      T0=t_cool,
                      alpha_temp=alpha_cool,
                      timer=ti)
shell = th.THComponent(name="shell",
                       mat=Graphite(),
                       vol=vol_shell,
                       T0=t_shell,
                       alpha_temp=alpha_shell,
                       timer=ti,
                       sph=True,
                       ri=r_fuel,
                       ro=r_shell)
                                                
                                                
                                        
# The coolant convects to the pebbles
cool.add_convection('pebble', h=h_cool, area=a_pb)
cool.add_advection('cool', m_flow/n_pebbles, t_inlet, cp=cool.cp)
                                                
                                        
                                                
                                                  
                                                
                                        
                                                
                                                  
                                                
                                        Average fuel pebble peak temperature \[<1100^\circ C\]
 
                                        Hundreds of discrete facilities mine, mill, convert, fabricate, transmute, recycle, and store nuclear material.
                                        
                                                
                                        
                                                
                                        
                                        An agent-based simulation is made up of actors and communications between those actors.
                                        A facility might create material.
                                        It might request material.
                                        It might do both.
                                        Even simple fuel cycles have many independent agents.
                                        
                                                \[N_i \subset N\]
                                        
                                                \[N_j \subset N\]
                                        
                                                \[N_i \cup N_j = N\]
                                        
                                                If a decision problem is in NP-C, then the corresponding optimization problem is NP-hard.
                                                
                                        
                                        
                                        
   
     mox 
-    waste 
+    spent_fuel 
     mox_fresh_fuel 
     mox_spent_fuel 
     
                                                
                                                
                                        
                                        
                                                Power generated by reactor type.
                                                Capacity deployed each year, by reactor type.
                                                
                                        
                                                
                                        
                                                
                                        
                                                
                                        
                                                
                                                
                                                
                                                
                                                
                                                
                                                
                                        